Lesson 1Naphthenes (cycloalkanes): structures (cyclohexane, methylcyclopentane), occurrence in naphtha/kerosene, uses and effects on fuel propertiesCovers cycloalkane builds and shapes, key on cyclohexane and methylcyclopentane. Looks at their place in naphtha and kerosene, refinery making paths, and effects on density, octane, and smoke point.
Cycloalkane structures and conformationsCyclohexane and methylcyclopentane examplesOccurrence in naphtha and kerosene cutsRefinery processes forming naphthenesEffects on octane, density and smoke pointLesson 2Olefins (alkenes): sources (cracking units), examples (ethylene, propylene, butenes), reactivity, impact on stability and polymer feedstock useLooks at olefin builds, sources from cracking units, and examples like ethylene, propylene and butenes. Talks about high reactivity, gum and deposit buildup, and value as polymer and chemical feeds.
Structural features of olefins and isomersSteam and fluid catalytic cracking sourcesEthylene, propylene and butenes examplesReactivity, oxidation and gum formationPolymer and petrochemical feedstock rolesLesson 3Isoparaffins (branched alkanes): structural features, examples (iso-octane), origin in fractions and catalytic reforming, importance for gasoline octaneFocuses on isoparaffins, their branched builds and examples like iso-octane. Explains making in isomerisation and reforming units, and why they're key for high-octane, low-knock petrol mixes.
Structural features of branched alkanesIso-octane as an octane reference fuelIsomerization and reforming formation pathsVolatility and combustion of isoparaffinsUse in premium and reformulated gasolinesLesson 4Paraffins (n-alkanes): general formula, representative molecules (n-pentane, n-octane), refinery sources and major usesIntroduces straight paraffins, their basic formula, and series. Reviews key molecules like n-pentane and n-octane, their boiling spans, refinery sources, and roles in petrol, kerosene, diesel and wax.
General formula and homologous series conceptPhysical trends across n-alkane seriesRepresentative n-pentane and n-octane usesRefinery units producing normal paraffinsRoles in gasoline, diesel and wax productsLesson 5Cetane number fundamentals: molecular features that raise or lower cetane and relevance to diesel ignition qualityLooks into cetane number as diesel start quality measure, linking molecular build to ignition wait. Discusses straight paraffins, branching, rings, aromatics, additives, test ways and usual spec ranges.
Definition and significance of cetane numberNormal paraffins and high cetane behaviorBranching, rings, aromatics and low cetaneCetane improver additives and treat ratesEngine and CFR test methods for cetaneLesson 6Analytical methods for molecular-class determination: GC, simulated distillation (SIMDIS), PIONA analysis (Paraffins, Isoparaffins, Olefins, Naphthenes, Aromatics)Describes test methods for sorting hydrocarbon classes in fuels. Compares GC, simdist, and PIONA, showing principles, results, limits, and how findings guide mixing choices.
Gas chromatography principles and columnsSimulated distillation for boiling profilesPIONA methodology and class separationData interpretation for refinery blendingLimitations, calibration and quality controlLesson 7Other property correlations: flash point, viscosity, hydrogen content, and how molecular structure controls theseLinks molecular build to flash point, viscosity, hydrogen amount and safety/performance traits. Shows how chain length, branching, aromaticity shape handling, burn quality and emissions.
Flash point trends with volatility and cutsViscosity versus chain length and shapeHydrogen to carbon ratio and emissionsLubricity, wear and molecular structureSpecification limits and property tradeoffsLesson 8Functional relationships: how chain length affects volatility, boiling point, and vapor pressureExplains how hydrocarbon chain length sets volatility, boiling point, and vapour pressure. Links forces between molecules and surface to phase acts, distillation curves, cold flow, and fuel loss by evap.
Intermolecular forces in hydrocarbon chainsBoiling point trends with carbon numberVapor pressure and volatility relationshipsImpact on distillation curves and cut pointsCold flow, evaporation loss and safetyLesson 9Aromatics: benzene, toluene, xylenes — structure, formation routes, distribution in crude fractions, role as petrochemical feedstocks and octane contributorsDetails aromatic hydrocarbons like benzene, toluene and xylenes, their builds and making paths. Reviews spread in crude cuts, roles as octane boosters, and key as chemical feeds.
Benzene, toluene and xylene ring structuresFormation in reforming and pyrolysis unitsDistribution in naphtha and heavier cutsOctane contribution in gasoline blendingPetrochemical and solvent applicationsLesson 10Branching vs straight chain: influence on octane number and volatility; use of Research Octane Number (RON) and Motor Octane Number (MON) conceptsChecks how branching vs straight chains hit octane, volatility, knock fight. Explains RON and MON meanings, test setups, sensitivity, and fuel design balance for drive and efficiency.
Straight chains and low octane behaviorBranching patterns and octane enhancementVolatility changes with branching degreeDefinitions of RON, MON and sensitivityFuel design using RON and MON targetsLesson 11Rings and aromaticity: influence on density, energy content, soot tendency, and octane; effects on cetane number for dieselChecks ring systems and aromaticity, tying to density, energy, octane, soot proneness. Compares aromatics and naphthenes, explaining petrol octane vs diesel cetane contrasts.
Aromaticity criteria and ring stabilizationDensity and volumetric energy relationshipsOctane enhancement by aromatics in gasolineSoot and particulate formation tendenciesEffects on diesel cetane and ignition delay