Lesson 1Use of gadolinium-based contrast agents: indications, contraindications, and NSF risk mitigationReviews gadolinium contrast effects, uses, and doses, then covers reasons not to use it, NSF risks, screening, and ways to lower risks while keeping good image quality and clinical benefits.
Gadolinium chelate types and stability classesClinical indications in neuro and MSK MRIRenal function assessment and eGFR thresholdsContraindications and high‑risk patient groupsNSF pathophysiology and risk reduction stepsInformed consent and documentation practicesLesson 2Sequence selection and parameter adjustments to trade image contrast, spatial resolution, and scan timeCovers how choosing sequences and settings affects contrast, detail, and scan time, teaching real trade-offs with TR, TE, flip angle, FOV, matrix, and parallel imaging in common protocols.
TR, TE, and flip angle fundamentalsAdjusting contrast with sequence familiesBalancing spatial resolution and SNRScan time, averages, and parallel imagingFOV, matrix, and slice thickness choicesProtocol optimization for clinical questionsLesson 3Safety zones, zone access control, and patient monitoring inside MRI (hearing protection, emergency response)Defines MRI safety zones, access rules, and staff duties, then covers watching patients, ear protection, emergency steps, and safe handling of codes or quench events in the MRI area.
ACR MRI safety zones I–IV layoutControlled access and staff responsibilitiesScreening before zone III and IV entryHearing protection selection and fittingPhysiologic monitoring and alarms in MRIEmergency response, code and quench plansLesson 4Artifacts in MRI and how they affect interpretation: motion, susceptibility, chemical shift, and their mitigationExplains common MRI artifacts, their causes, and looks, focusing on motion, susceptibility, and chemical shift, then gives ways to spot, reduce, or use artifacts for better image reading.
Patient motion and ghosting artifactsFlow and pulsation artifacts in neuro MRIMagnetic susceptibility and metal artifactsChemical shift and India ink artifactsAliasing, wraparound, and truncationSequence and parameter tweaks to reduce artifactsLesson 5Basic MRI signal formation: hydrogen nuclei, T1 and T2 relaxation, proton density, and image contrast mechanismsIntroduces MRI signal from hydrogen atoms, Larmor precession, and resonance, then explains T1 and T2 relaxation, proton density, and how they create contrast in clinical MRI images.
Hydrogen nuclei, spin, and Larmor frequencyRF excitation, resonance, and signal inductionT1 relaxation and longitudinal recoveryT2 relaxation and transverse decayProton density and its role in contrastFactors influencing overall image contrastLesson 6Patient preparation for MRI musculoskeletal and neuro exams (positioning, coils, immobilization, and comfort measures)Details prep for bone and joint and brain MRI, including screening, positioning, coil picks, holding steady, and comfort tips, to get best images while cutting motion, worry, and extra scans.
Pre‑exam screening and patient educationPositioning for spine and brain MRIPositioning for joints and extremity MRICoil selection and placement optimizationImmobilization devices and motion controlComfort, anxiety reduction, and sedationLesson 7MRI safety screening: ferromagnetic hazards, implants, pacemakers, and the safety questionnaire workflowOutlines MRI safety screening steps, stressing magnetic hazards, implants, and heart devices, and how to read device labels, handle okay implants, and record clearance choices.
Ferromagnetic object and projectile risksStandard MRI safety questionnaire itemsPacemakers and cardiac device categoriesMR Safe, MR Conditional, MR Unsafe labelsHandling aneurysm clips and neurostimulatorsDocumentation and communication of clearanceLesson 8Common MRI sequences relevant to musculoskeletal and neuro imaging: T1-weighted, T2-weighted, FLAIR, DWI, GRE/SWI, proton density, and STIRReviews main MRI sequences for bone and joint and brain imaging, describing contrast types, common uses, and limits of T1, T2, FLAIR, DWI, GRE or SWI, proton density, and STIR.
T1‑weighted sequences and main indicationsT2‑weighted and fluid‑sensitive imagingFLAIR for parenchymal and CSF pathologyDWI and ADC for acute ischemia and tumorsGRE and SWI for blood and calcificationPD and STIR in joint and marrow evaluation